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The existence of modes of compressible fluid flow involving a separation of variables 
into a similarity solution in two dimensions and one-dimensional flow in the third 
is demonstrated. The numerical integration of such flows by a modified von 
Neumann-Richtmyer scheme is proposed, and the stability conditions investigated, 
showing that a generalized Courant-Friedrichs-Lewy condition is necessary. The 
inclusion of dissipation in the forms of artificial viscosity and thermal conduction into 
the model is discussed. The results of some test calculations are presented to 
demonstrate the behaviour of this model. 

1. Introduction 
The numerical simulation of compressible gas flow is a problem of severe complexity, 

demanding both of computational time and store. In  consequence use is generally 
made of symmetry to reduce the number of dimensions treated in the problem. In 
this paper an alternative approach is considered for simplifying the problem. The flow 
is reduced to  an analytic form in one or more dimensions by the use of self-similar 
forms, the flow in the remaining directions being calculated by a cell method. 
Although only one such problem is considered here, it is likely that other such 
solutions exist and that the method is applicable to  other problems. 

To this end we first show that there exists an exact solution of the equations of 
fluid mechanics in which a body of gas possessing a similarity density profile in the 
(x, y)-plane, but varying in z, and of uniform temperature over that  plane expands 
into vacuum, maintaining its self-similar form in (2, y) and with a one-dimensional 
form of expansion in the z-direction. Such a flow is clearly a combination of a self-similar 
flow and a one-dimensional expansion, and we have therefore called i t  a ‘hybrid ’ flow. 

The numerical integration of the hybrid model is readily accomplished by an 
extension of the well-known von Neumann-Richtmyer Lagrangian scheme for 
one-dimensional gas flow. The finite-difference forms of the governing differential 
equations are established, and their stability conditions examined. 

The hybrid model remains an academic exercise unless it can be applied to some 
useful physical problems. I n  particular, the expansion of non-uniformly heated 
cylinders of general cross-section provides such a problem. If the initial length of the 
cylinder (in the z-direction) is long compared with the transverse (z, y)  dimensions, 
the flow will rapidly assume a similarity form in the (2, y)-plane. Furthermore, if the 
temperature is initially isothermal, or if the gas is uniformly heated, the temperature 
remains uniform across the (z,y)-plane. We have shown (Pert 1980) that, for 
one-dimensional cylindrical and spherical flows, the self-similar solution gives an 
accurate representation of the flow, provided that the appropriate matching parameter 
between the initial scale lengths of the cylinder and the self-similar flow is used. In  
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this work we shall assume that this hypothesis can be applied to these flows, and shall 
use matching parameters derived in our earlier publications. 

The model is applied to some real flows of bhis type in 9 11 as a demonstration of 
its use and as a test of its accuracy. 

SZ 
2. The hybrid model 

We consider the expansion (or contraction) of a body of gas subject to a velocity 
distribution witJhin the gas of the following form. The velocities (u, v)  in the (x, y)-plane 
are assumed to take a linear self-similar form separable in the coordinates (x, y)  and 

(1) 

( z ,  t ) ,  namely xu Y V  
X ’  Y ’  

u = -  v = -  

where the scale lengths X ,  Y are functions of time t only, and the scale velocities 

dX d Y  u=-  v=-. 
dt ’ dt 

The axial ( z )  velocity component is assumed to be uniform over the (x, y)-plane and 
is a function of ( z ,  t )  only. It follows from (1) and ( 2 )  that  the Lagrangian coordinates 
(E, = x / X ,  6, = y/ Y) remain constant for each fluid particle. 

Consider a small cell fixed in the fluid of dimensions 6x, 6y and 62. Since w is a 
function of ( z ,  t )  alone, the spacing 6 z  is independent of (x, y). The mass of the cell 
is constant : 

p 6x 6y 6z  = p(X Y 62)  atz S&, = const. 

Since XY S z  is a function of ( z ,  t) alone, the density distribution is separable: 

(3) 

(4) 

(4 a )  

By consideration of Euler’s equation in the (x, y)-plane it follows that the pressure 

(5) 

(6) 

P = POfZ, t ) f ( L  t,). 

P = P O ( Z ,  t)f(6L 68). 

P = POk> t )  $(f;;> t i )> 

Furthermore, it follows from ( 1 )  that p must be even in (x, y),  and therefore 

must be separable: 

where dU dV 
dt po(z, t)  = &po(z,  t) x- = iA,Po(Z, t )  Y z ,  

where A, and A, are separation constants. 
The z-component of Euler’s equation has the form 

which is only consistent with the hypothesis w = w(z,  t) if the functions f(f;:, 6;) and 
+(ti, 6;) are identical to within a constant factor, i.e. if the ratio p/p is dependent 
on ( z ,  t )  only. Furthermore, since X and Y are functions of time only, i t  follows from 
(6) that p / p  must be everywhere constant. For an ideal gas this condition is upheld 
if the temperature is everywhere uniform. This requirement is equivalent to the usual 
isothermal condition as applied to uniformly self-similar flows (Pert 1974) and 
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maintained either adiabatically or in the case of external heating by strong thermal 
conduction. In  this case i t  follows from (7) that  the self-similar distribution must take 
a Gaussian form 

for the case A, = A, = 1 ,  where X and Y are the l /e  widths of the distribution. 

ratio of pressure to density according to the ideal gas law 

f ( &  6;) = M:, E ; )  = exp { - (6: + 6;))  (9) 

In  view of this result i t  is convenient to define the ‘total’ temperature TA by the 

P R  
- P = $TA, 

where M is the molecular mass number and R, the gas constant. For example in a 
plasma 

where and T, are the ion and electron temperatures respectively and Z the ionic 
charge. Clearly the hybrid condition requires that T A  be uniform everywhere. 

In  a similar fashion i t  can be shown that a mass of gas with a separable density 
distribution, Gaussian in (x, y) and a t  rest, whose ‘total’ temperature is always 
constant over the entire fluid will expand in a hybrid fashion. 

T A  = + ZT,, (10a) 

The equations of motion follow from (6) and (8) : 

The ‘total ’ temperature is determined from the overall energy in the gas. Thus the 
average thermal energy per unit mass of a polytropic gas of adiabatic index y is 

1 R  
Et = C,TA = 

y - 1 M  

and the average kinetic energy per unit mass is 

averaged over the (2, y)-plane. Thus the total energy per unit mass is 

d U  
X-. E = Mw2+&(U2+ V 2 ) } + -  

1 
2 (y -1)  dt 

The overall energy balance is completed by including terms associated with energy 
deposition by external sources. 

3. The local hybrid approximation 
The hybrid model provides a useful solution of problems for which its condition 

of validity is appropriate, namely that TA be everywhere uniform. However, in many 
applications we consider the flow of a system of initially large aspect ratio. I n  this 
case we may imagine that an approximately self-similar flow will be rapidly 
established locally in the short dimensions of the system, the flow in the long 
dimension (2) being relatively slow. Provided the gradients in this long dimension are 
relatively small we may relax the hybrid condition to apply in the (x, y)-plane only, 
with weak variations in X ,  Y and TA with z permitted. 
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Under this approximation we consider w(z,t) to be the velocity of flow in the 
z-direction averaged over the (x,y)-plane, so that there is no net flow through an 
(x, y)-plane moving with velocity w. We assume that the self-similar distribution is 
established over the (x, y)-plane sufficiently rapidly that the changes in the distri- 
bution due to the variation of the z-component of velocity with x and y are always 
negligible. The assumption is therefore made that the flow in the (x,y)-plane is 
everywhere locally self-similar with characteristic parameters X, Y, U and V which 
vary from plane to plane, i.e. with z as well as t. 

The equations of motion are then most easily obtained by considering the flow of 
the fluid contained between two parallel (x,y)-planes separated by a distance 6z.  
Equations (4) and (6) follow directly under the assumption of local similarity by a 
similar argument to that given earlier. The local hybrid approximation, however, 
unlike the hybrid model, is not exact, for in this case the analysis of (8) shows that 
the z-component of velocity varies across the (x, y)-plane due to the variation of X 
and Y with z. The appropriate equation of motion for w is obtained from the 
consideration of the momentum balance of the line element 62 ,  which after integration 
over the (x, y)-plane yields 

In  this case the ‘total’ temperature TA varies with both z and t ,  but is constant across 
the plane (x, y). Hence no thermal energy is convected across an (x, y)-plane moving 
with velocity w. The energy balance is constructed in a similar manner as for the 
hybrid model itself, namely the average energy/unit mass across the plane (x, y) is 

1 au 
E = 2(t(Vz+ VZ)+w2}+- 2(y- qXat’ 

and is completed by including terms associated with energy deposition by external 
sources, and thermal conduction. We may remark that the term in w2 in (15a) is 
identified by evaluating the work done by the pressure on the line element 62, namely 
a(XYp,)/az and using (12a). 
As noted earlier, the error in the local hybrid approximation arises from the 

variations of X and Y with z, which give rise to variations in the z-component of 
velocity across the plane (x, y). It is readily shown in cases of practical interest that 
the velocity varies monotonically with 6, and &,, and furthermore that w given by 
(12a) is in fact the velocity at the l /e  point. In  contrast, the velocity w‘ calculated 
by (12) is that at the symmetry axis of the similarity profile. Thus w-w’ gives a 
measure of the total velocity variation across the (x, y)-plane. We may therefore assess 
the validity of the hybrid approximation during a calculation by requiring the 
variation I(w-w’)/wl to be less than some prescribed limit. 

In  most simulations of the type proposed for this model this condition is upheld. 
Using the numerical schemes to be described later we have calculated the error due 
to this local approximation during the expansion of uniform cylinders of various 
aspect ratios. As expected, the largest error occurs in the asymptotic, late-time 
motion. We find that generally the fractional error is reasonably constant over the 
bulk of the flow, but increases towards the end (figure 1) .  These results are 
summarized in figure 2. For expansions involving aspect ratios greater than 1 the 
bulk error is x lop3, and only exceeds in the endmost cell, whose differencing is 
in any case poor. For small aspect ratios the end error is more extensive, but by no 
means severe, and in the bulk only of order 5 x For very large and very small 
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FIQURE 1. Plot of the absolute local error E = Iw-w’I and axial velocity w as functions of the 
Lagrangian cell number in the asymptotic phase of the expansion of cylinder of initial radius 1 unit 
and half-length 5 units. The initial energylunit mass was 1 unit. 

aspect ratios, the error is nearly independent of the ratio; indeed a t  a ratio of 100 
the error only exceeds 1 %  in the endmost cell. Results from other simulations 
involving heating etc. show similar behaviour, but the error is in general smaller than 
in the initially heated flow described here. 

The nature of the simplification in the local approximation is comparable to that 
made in the representation of block (test) masses by a similarity model discussed in 
our earlier paper (Pert 1980). Indeed, since we seek to model such structures here, 
it is clear that the inaccuracy introduced by the local approximation is no more severe 
than that due to the use of a similarity expansion in (x, y )  itself. 

In the absence of thermal conduction along the cylinders the set of partial 
differential equations form a set of quasilinear hyperbolic equations. The characteristic 
speeds are easily shown to be (w - c,  w, w and w + c ) ,  where c is the sound speed. The 
solutions to these equations can therefore be obtained by the method of characteristics. 
Such a procedure is, however, complex and we shall not pursue it here, preferring 
to develop a simple finite-difference approach. 
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FIQURE 2. Variation of the local error with aspect ratio for conditions similar to those in figure 1. 
The fractional and absolute errors are measured at cell 25, and the positions of the 0.1 %, 1.0 % 
and 10.0% fractional error points estimated from the fixed centre. 48 cells were used in these 
calculations. 

4. Shocks 
The isothermal, linear self-similar form of the hybrid model has the important 

property of including shocks lying in the (2, y)-plane and propagating in the z-direction. 
The upstream state immediately ahead of the shock has a uniform temperature and 
Gaussian distribution of pressure and density across the shock front. Consequently 
the sound speed and therefore the Mach number is uniform over the (2, y)-plane in 
front of the shock. Since the gas is polytropic, the temperature, density and pressure 
ratios are uniform (Courant & Friedrichs 1948, p. 148). The downstream temperature 
is therefore uniform, and the pressure and density Gaussian across the (2, 9)-plane. 

5. Eulerian formulation 
We may put these equations of motion in an Eulerian form. Thus let m be the 

effective fluid mass per unit length in the z-direction. Then the equation of continuity 
takes the form: 

am a m 
- + - ( m w ) = O ,  p -- at a Z  O - x Y  

The kinematic equations of motion 

av ay ax ax 
at a Z  ' at az -+w-= v -+w-= u 
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determine X and Y. I n  a similar fashion the dynamic equations take the form 

The equation of energy balance is 

-(mE)+-(m[E+E]) a a = m ( W - 2 ) .  
at az 

where W is the energy deposition rate per unit mass by external sources and Q an 
average thermal conduction heat flux in the z-direction. 

6. Lagrangian formulation 
The equations of motion assume a simpler form in Lagrangian geometry. Thus 

consider the fluid cell defined by two neighbouring planes (2, y )  of separation Az, at 
the point x. Let the effective mass of the cell be M = mAz. The equation of continuity 

The dynamic equations of motion become 

The equation of energy balance is 

where Et is the 
7 0  =  PO. 

thermal energy given by (13)  and 7, the specific volume on axis, 

7. Finite-difference integration 
The Lagrangian form of these equations is readily integrated by a simple 

generalization of the well-known von Neumann-Richtmyer scheme (Richtmyer & 
Morton 1967) for solving one-dimensional fluid problems in Lagrangian geometries. 
To this end the equations are integrated explicitly using a leapfrog technique where 
the densities and pressures are evaluated one half timestep out of phase with the 
velocities. 

To apply this scheme to the hybrid model, we divide the gas into cells in the 
z-direction, a cell being the gas initially lying between the planes zi and z ~ + ~ .  We define 
the state variables, pressure, density and temperature at the cell centre and at integer 
time steps, together with the similarity variables X and Y .  The similarity velocities 
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U and V are defined at the cell centres but at half-integer timesteps. As in most 
schemes the cell coordinate zi is defined a t  the cell boundary at integer timesteps, 
and the boundary velocity at the same point but at half-integer timesteps. The set 
of variables is thus 

The finite-difference equations are identical with those for the von Neumann- 
Richtmyer scheme (Morton & Richtmyer 1967, p. 295) with appropriate additions: 

(32) 

This scheme is clearly centred difference and therefore second order. It maintains 

= En -1 n+l 
ti+$ z@i+i + P?+,t) (723 - 7?+$ 

the positivity of density and energy provided that 

both of which place a constraint upon the timestep At. Furthermore, we demonstrate 
in appendix A that the scheme is weakly conservative (Pert 1981) in energy, which 
thereby places an upper bound on the solution provided a conservation error limit 
is placed on the timestep. The scheme is therefore formally stable (Pert 1981). It 
is not necessarily well behaved, for there may exist linearly unstable modes which 
are nonlinearly damped, but are nonetheless undesirable. To maintain the solution 
linearly stable we show in appendix B that  i t  is necessary to introduce a Courant- 
Friedrichs-Lewy timestep constraint to the similarity flow in addition to that along 

1 1 1 the z-axis, namely 
(34) 

These conditions on Ai themselves provide the necessary conservation error limit on 
At, and are therefore sufficient to ensure a well-behaved numerical solution. 

( c A t ) 2 { q + q + w }  1 .  
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8. Artificial viscosity 
The flow in the z-direction is arbitrary and will depend on the nature of the pressure 

distribution in z alone. Thus compression Aow in z may occur, with shocks in extreme 
cases. More generally a longitudinal nonlinear oscillatory growth may take place, 
rather similar in nature to the effects observed in two-dimensional Lagrangian codes. 
To overcome these problems we introduce an artificial viscosity with stress q into the 
Lagrangian equation of motion (22) : 

a(Azj2 
azp- (g< o ) ,  

0 (otherwise), 

where the stress 

at 

a being a constant, and Az an effective cell width. The artificial viscosity in this form 
satisfies the hybrid condition since q l p  is a function of ( z ,  t)  only. qo is the value of 
q on the axis. 

In finite-difference form q is 

and the eauation of motion 

The equation of energy balance must be modified to take into account the work 
done by the artificial viscosity. Thus (23) becomes 

I n  a similar fashion the finite-difference equation (32) must also include this term : 

,zj;;; = En tr+t -1 2(Pi+; n+l +P?+i) (7?$-7?+4) 

This modification is subject to a further stability condition of the form (Richtmyer 

4a2 IAz?! - AZ?+~~ 
Az?+n+: 

& Morton 1967, p. 350) 

< 1  (38) 

to give for the complete stability condition 

which must be satisfied in every cell. 
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9. Thermal conduction 
Thus so far we have neglected thermal conduction along the z-direction, which leads 

to a redistribution of energy. Since the gas is assumed isothermal in the x- and 
y-directions, the heat flux in the z-direction across a complete (x, y)-cross-section is 

where the integral is performed over the complete cross section. This procedure is 
unsatisfactory for the important case of a plasma, where the thermal conductivity 
is independent of density, and therefore (x, y), since the Gaussian distribution extends 
to infinity in the (x,y)-plane. This unphysical behaviour is due to two incorrect 
assumptions. 

(i) The distribution is finite, the Gaussian distribution being in error near the 
plasma edge. We define the plasma surface by the edge factor r such that the 
boundary is described by the ellipse 

(ii) Equation (39) assumes that the heat flow is described by Fourier’s law. 
However, a t  low density, flux limitation occurs, which reduces the heat flux below 
that calculated using the classical thermal conductivity. A useful approximation for 
the flux-limited conductivity is : 

KO 
1 + A  (VT(/T’  

K =  

where KO is the classical conductivity. The empirical constant A is inversely 
proportional to density. Hence, if A, is the value on the axis, 

h = ho(z , t )  exp -+- . 
K 2  3 

Using (41) and (42) we obtain 

(43) 

where A, = A, exp F2 is the value of A a t  the plasma boundary. 
In  this calculation we have specifically treated the case of a plasma; the general- 

ization to other media is straightforward and may be accomplished in a similar way. 
The averaged thermal flux used in (19) and (23) is simply obtained: 

The heat flux Q may be added to (32) in a finite-difference form. As usual in these 
problems stability requirements demand that the heat transport be treated by an 
implicit form if stringent timestep limitation is to  be avoided (Richtmyer & Morton 
1967, p. 187). The problem then reduces to a tridiagonal matrix equation, whose 
solution is well known (Richmyer & Morton 1967, p. 199). 
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10. Expansion of large-aspect-ratio cylinders 
Before proceeding to the computational tests of the finite-difference scheme 

proposed in $9, it is convenient to examine the free expansion of cylinders of hot gas 
into vacuum. The general aspects of this behaviour can be established by a 
consideration of the characteristics of the hybrid model noted earlier, before recourse 
is made to numerical integration. In  this section we shall examine this motion with 
reference to the flow of cylinders of circular cross section, for which analytic 
expressions can be obtained. However, it should be remembered that these results 
are quite general in nature, and that the conclusions will apply to cylinders of 
arbitrary cross section. 

We consider the expansion of a cylinder of gas of radius R, and length 2L,. The 
gas is initially heated, with an internal energy E, per unit mass, and no further energy 
is communicated to it. The motion may be qualitatively described in terms of 
rarefaction wafes propagating from the surfaces into the gas. If the aspect ratio L,/R, 
is large the radial expansion will be well developed by the time the axial rarefaction 
has penetrated a distance x R,. Thus qualitatively we may expect that a cylindrical 
expansion is well developed over the bulk of the gas up to a distance x R, from the 
end, with an approximately spherical expansion from the end. In fact the axial 
rarefaction continues to propagate into the radial expansion, producing a more 
uniformly distributed axial velocity : indeed we shall show that in the final asymptotic 
phase the gas has all acquired a finite axial velocity (except at the origin). 

Let us consider the propagation of the head of the axial rarefaction within the 
hybrid approximation. Neglecting longitudinal thermal conduction the head of the 
rarefaction must follow the leading characteristic of the hybrid equations into the 
gas, i.e. since w = 0 a t  the head 

- c.  - dz 
dt 
- _  

However, the sound speed c varies in time due to the radial expansion, thus, since 
the expansion is adiabatic. 

where po is the initial density and c, the initial sound speed. Before the arrival of the 
first characteristic the motion is purely radial, for which the similarity model 
equations have the form 

where Y = +P‘ is the parameter defined in Pert (1980). This equation has the first 
integral 

where lJ, is the initial (zero) velocity of the perimeter. The motion is therefore 
described before the arrival of the first characteristic by 

14 FLM 131 
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where f = 2 / ( y - l )  is the number of degrees of freedom of the gas molecules. The 
distance travelled by the first characteristic is 

Lo-z = Jcdt = coJ($)y-'dt 

The integrals may be evaluated in terms of elliptic integrals i f f  is integral. In 
particular, iff = 3 ,  y = 8 

at large times ( R  % Ro), and 

at large times. F[  ] and E[ 3 are elliptic integrals of the first and second kinds 
respectively. At  large times ( R  R,) (47) and (48) take the forms 

It is clear from (48) that, provided that f 2 2 (or y < 2 ) ,  the characteristic 
continues to propagate inwards for all times. The entire cylinder eventually acquires 
a longitudinal velocity (except at the centre z = 0 ) ,  and the density distribution will 
be modified by the axial expansion. The asymptotic distribution will only be reached 
for times satisfying the inequality 

The motion of the head of the rarefaction is given in parametric form by (47) and 
(48): figure 3 shows this motion for various values of y .  

The pattern of flow indicated by this analysis is generally found in numerical 
calculations, namely that, at a point a distance I from one end, the flow is cylindrical 
for a time x P/15coTZR~ (y  = i), after which axial motion occurs and significantly 
modifies the longitudinal density profile. The motion of the rarefaction head, and 
therefore the development of the axial profile clearly depend on r, the similarity 
parameter. Figure 4 shows the trajectory of the head in a gas of y = for two typical 
values of the parameter r, clearly demonstrating this effect, and we must expect that 
simulations using the hybrid model will be sensitive to this parameter. 

It is noteworthy that (47) constitutes a complete analytic solution to the problem 
of the self-similar flow of an instantaneously heated body in cylindrical geometry. 
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FIQURE 3. The trajectory of the first characteristic propagating 
along a cylinder for values of y = 1, f, 2, %. 

11. Numerical tests 

We may identify three major sources of inaccuracy in calculations using the hybrid 
model : the local approximation, numerical errors and the representation error. The 
first of these we have already examined in some detail, and have shown that provided 
the aspect ratio is not small the error involved is not severe. The second error, that 
arising from the finite-difference integration techniques described earlier, can be 
investigated by comparing results from the computer code with known exact analytic 
solutions of the hybrid equations; for example, the hybrid model reduces to the 
ellipsoidal similarity flow when the gas-density distribution is Gaussian in the 
z-direction also. For such flows the true solution may be simply evaluated and indeed 
some exact integrals of the flow do exist. In  particular we may remark on the linear 
nature of the velocity distribution in z as a good test of the accuracy of the numerical 
solution. For a polytropic gas of y = Q with a spherical symmetric density distribution, 
there exists the following analytic solution for an expansion into vacuum with no 
energy input and starting from rest : 

R2 = Ri+jE,t2,  (53) 
where R and R, are the l /e radii at  times t and 0 as defined earlier (Pert 1980), and 
E, the total (constant) energy. 

Figures 5 and 6 show the results of such a test. The hybrid code was used to model 
the expansion of a spherical Gaussian mass of gas whose y = t with boundary radius 
1 unit and l /e  radius R, = 0.366 units. The initial specific energy was 0.667 units. 
The mesh was constructed with a uniform spacing of 80 cells in the z-direction. 

Figure 5 shows the behaviour of the l /e widths in the x- (or y-) and z-directions, 
14-2 
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FIGURE 4. The trajectories of the first characteristic calculated analytically (-) for values of 
r = 0.287 and 0.514, are compared with the finite-difference calculation (0). Also shown are values 
measured from the 2-dimensional code (0 )  calculations. The cylinder had an initial radius 1 unit, 
specific internal energy 1 unit, and the gas y = 9. 

X and Z respectively, calculated with the code as functions of t2 .  It can be seen that 

(54) 
to a high degree of accuracy X = Z = R ,  

where R is given by (53). The slightly larger value of Z is reflected in the 
correspondingly smaller value of X. The origin of the error in Z is due to the 
truncation error of the numerical scheme. In figure 6 we plot the expansion velocity 
w in the z-direction in terms of the Lagrangian parameters i characterizing the cell 
boundary. Since the mesh had initially uniform spacing, the similarity model predicts 
that w should be a linear function of i. Figure 6 shows that this condition is accurately 
maintained up to cell 70, but that thereafter there is a progressive, but small, error 
up to the edge. Such a departure is only to be expected and of course, results from 
the violation of the similarity condition a t  the edge of the mesh, where a vacuum 
is assumed. The development of this edge zone can be observed in the difference 
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FIGURE 5. The development of the axial z (0) and radial z (0 )  l /e widths of a Gaussian distribution 
sphere with time t .  The analytic solution is represented by the linear relationship between the 
squares of the 1 / e  widths and time. 

between the asymptotic velocity profile (at  t = 100) and the profiles at times 0.1,0.5 
and 1.0. 

A further test of the numerical accuracy of the finite-difference form is shown in 
figure 4, where we compare the motion of the head of the rarefaction propagating 
down the cylinder, calculated from (47) and (48) with values obtained from the code. 
Bearing in mind the inaccuracies in the latter in identifying the head, the agreement 
is remarkably good. 

In  practice we shall be interested in calculating the flow of uniform, but limited, 
gas masses. The representational error is due to the use of an approximate functional 
density profile to represent a more complex real one, and is likely in all cases of 
practical importance to be the dominant inaccuracy. Regarding this term we may 
immediately place some bounds on its range for rod-shaped bodies, for i t  is clear that, 
as the rod length becomes very large, the expansion is purely symmetric, and the 
solution that of the cylindrical similarity model, whose accuracy is given in our earlier 
paper (Pert 1980). Furthermore, at the limit of small aspect ratios e x 1 we may 
consider the sphere, which was also treated earlier. This latter problem may be 
considered as a worst case, for, being a short ‘stumpy’ body, the errors in the axial 
expansion may be expected to  reduce as the aspect ratio is increased, and the 
expansion becomes more cylindrical. A good idea of the reliability of the model for 
representing these flows can therefore be obtained by consideration of our earlier 
detailed treatment of the similarity model, and of a spherical expansion. We shall 
therefore examine this latter case in some detail. 

We compare the flow of a sphere of radius 1 unit, density 1 unit and energy density 
1 unit, calculated with a one-dimensional spherical symmetric Lagrangian code using 
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FIGURE 6. The variation of the axial velocity with Lagrangian cell parameter i at various times 
during the expansion of a sphere with Gaussian density distribution. 

91 cells, with that calculated by the hybrid code using 80 cells. We may remark that 
this flow being spherically symmetric is not hybrid, and further that this provides 
a more severe problem than those expected to be encountered in practice where the 
aspect ratio of the axial to radial dimensions is large. Examination of the results 
presented in Pert (1980) shows that the greatest deviation from a similarity expansion 
occurs in the case of a gas with y = 5,  which case we therefore use as a test. As in 
our earlier work (Pert 1980) it is necessary to match the boundary of the sphere to 
the initial l /e  width of the equivalent similarity profile, through a parameter r 
defined as in (48). In this case we match the initial values of X and Y for each cell 
to the appropriate boundary value of the sphere in that cell using a constant value 
of r. Appropriate values of r for matching the expansion of an isothermal sphere 
to an equivalent similarity flow were deduced in Pert (1980), two differing values 
being obtained for different matching conditions. 

Figures 7 and 8 show comparison of the flows calculated with the hybrid model 
and with the Lagrangian code. In each case we compare the results obtained with 
the two values (0.247 and 0.456) of the matching parameter derived in Pert (1980). 
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FIQURE 7. Variation of the density at the centre of an initially uniform sphere of gas expanding 
into vacuum, calculated with a 1-dimensional Lagrangian code (-) and with the hybrid code 
using two different values of the similarity parameter r. 

In figure 7 we show the behaviour of the central density as a function of time. It can 
be seen that except during the initial phase of expansion as a rarefaction propagates 
in towards the axis the central density is well described. In the hybrid code it is 
necessary to include a limit of the form given earlier (Pert 1979) to describe the early 
rarefaction wave phase, namely 
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FIGURE 8. Comparison of the density profiles of an initially uniform sphere expanding into vacuum 
calculated a t  late times (asymptotic form) in the axial (-) and radial (-----) directions by the 
hybrid code with two different values of the similarity parameter r. For reference the profile given 
by a l-dimensional Lagrangian fluid code calculation is also shown (-.-.- ). 

when x!+~ and y:+$ are the initial boundary dimensions in the x-and y-directions 
respectively. As can be seen (figure 7 )  i t  is this phase of the motion which is poorly 
described. 

In  figure 8 we compare the late-time density profile calculated with the hybrid 
model with that evaluated by the Lagrangian code. It can be seen that the actual 
profile is reasonably accurately represented by the model, although the unusual 
behaviour near the centre remarked in our earlier work is not reproduced. The overall 
representation is, however, markedly more accurate than that of the simple similarity 
flow. From figure 8 we may note that the accuracy of the representation near the 
origin is improved as r is decreased, whereas the converse is true over most of the 
profile. Furthermore, the symmetry of expansion is better maintained with 
r = 0.456. I n  general, r = 0.456 appears to  be a good compromise for this problem 
and to give the best representation overall. 

The spherical expansion, although a useful test case in that an accurate solution 
is available, is rather artificial in that  its aspect ratio is small. More realistic tests 
must involve the calculation of flows of large-aspect-ratio cylinders, a more severe 
problem involving a t  least a two-dimensional code. For these tests the recently 
developed quasi-Lagrangian method (Pert 1983) was finally adopted. Initial tests 
with a fully Lagrangian two-dimensional code showed that, although the code worked 
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well, the implicit assumption in the hybrid model of uniform transverse temperature 
could not be maintained and led to marked deviations between the calculations. The 
use of an orthogonal mesh with rezoning overcame this difficulty, but introduced 
another by virtue of the rezoning. I n  particular, initial calculations using the 
SHASTA algorithm were characterized by a severe fourth-order diffusion of the radial 
velocity near the axis and led to a badly distorted radial density profile. This was 
avoided by the use of the donor cell (with flux correction) algorithm, which, for a 
quasi-Lagrangian system, minimizes the fourth-order diffusion, but gave rise to  some 
errors, as will be noted. 

One of the major objectives of this series of the two-dimensional code runs was 
to  determine a suitable value of the similarity constant to  match the hybrid model. 
As we have seen, the motion of the rarefaction head is sensitive to  variations in this 
parameter. Figure 4 includes the trajectory of this characteristic measured during 
the expansion of a preheated cylinder of gas (y  = 5) of unit radius, unit density and 
unit specific energy; the length was 10 units. The head of the rarefaction could be 
clearly identified for about the first 150 units of time, before diffusion obscured its 
location. It can be clearly seen that the motion is compatible with r = 0.514, but 
not with r= 0.287, and indicates a value of r perhaps slightly greater than the 
former. This result, and the preceding, indicate that the parameter r,, and not re, 
as defined earlier (Pert 1980) should be used. This is believed to be a general result, 
as the former quantity characterizes the bulk flow within which the rarefaction 
travels, whereas the latter depends on the edge. 

A number of comparison runs have been performed. The results from them are all 
very comparable, and we therefore examine only one specific case, namely a circular 
cylinder of gas, y = Q, radius 1 unit, length 5 units, initial density 1 unit and energy 
density 1 unit, a t  a specific time in the flow, 200 units after initiation, when the flow 
is well developed. The hybrid calculations were performed with similarity parameters 
of 0.287 and 0.514 and used 48 cells: the 2-dimensional code used a mesh of 48 x 23 
cells. A quadratic zone distribution (Pert 1983) was used in both codes to improve 
the accuracy. 

A study of the axial velocity distribution in both codes a t  this time showed that 
the motion was nearly asymptotic (w - z / t )  everywhere. Furthermore the variation 
of axial velocity across the radial plane was everywhere less than 3 % in conformity 
with the local approximation, and was greatest a t  the tail of the expansion, where 
the errors are largest. 

A comparison of the longitudinal density profiles (figure 9) shows that for I' = 0.514 
there is no significant error on-axis and that the averaged density distribution is 
calculated to a reasonable degree of accuracy. The distribution at a radius of 221 .O 
corresponds approximately to  the point of the similarity distribution and to  cell 
13 of the code. We may also note the error in the tail of the expansion calculated 
on axis with the 2-dimensional code of the type noted elsewhere (Pert 1983). 

The origin of the small error off axis is seen by examining the radial distribution 
profiles (figure 10a). Comparison with the equivalent charts for cylindrical expansion 
(Pert 1980) shows that the error arises from the representation error of the underlying 
cylindrical expansion by a similarity profile, and is no more severe than is found there. 
It is perhaps interesting to note that, near the axis, the density has a Gaussian profile, 
but with a l / e  width significantly less than that given by the similarity model (figure 
lob). 

Comparing the results of the two-dimensional code calculation with the hybrid 
results for the two values of the parameters 0.287 and 0.514, it can be seen (figures 
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9 and 10) that the larger value of I' gives markedly more accurate results, in 
agreement with our earlier analysis based on the motion of the leading characteristic, 
and confirms that r, and not re should be used. 

It may be expected that the accuracy of the model will improve if the gas is slowly 
heated over a time comparable to the radial expansion time R,/c,, in analogy with 
the corresponding result for pure similarity flows (Pert 1980). Numerical checks using 
the two-dimensional codes confirm that this is indeed the case, and that the results 
are broadly in line with our earlier predictions. 

As a final example we examine a problem in which shock compression occurs to 
illustrate the effect of the artificial viscosity. The problem chosen is more extreme 
than those of more practical interest, in that the cylinder has an aspect ratio 
length/diameter of only unity, and is instantaneously heated over a small local region. 
We consider a symmetric problem about the (z, y) axial plane through the centre of 
the cylinder, and study only the right half-plane. The cylinder initially has a half-length 
of 1 unit and radius 1 unit, the density and specific energy are 1 and loFs units 
respectively. The half-cylinder is represented by a hybrid model with 80 cells along 
its length, and with a matching parameter r = 0.456. A t  a time t = 0, the centre cell 
(i.e. z = f0.0125) is instantaneously heated to a specific energy of 1 unit: the other 
cells remaining cold. We consider only the hydrodynamic aspects of the problem, 
neglecting any thermal conduction along the axis. The artificial viscosity constant 
a2 was set to  2. 

The flow in this case may be expected to resemble a blast wave moving along the 
cylinder, with a simultaneous radial expansion. The model predicts just such a 
behaviour, and figure 11 shows the variation of density along the cylinder axis after 



Hybrid model of compressible fluid flow 

h 

9 

; 
c 

b 
u” . 

2 

0 
P t 
2 2 



422 C. J .  Pert 

II 
'I 
'I 
' I  
' I  
I I  

0 0.5 1 .o 
Axial distance 

FIGURE 11. The axial ffow of a cylinder of length and diameter 2 units locally heated in the centre 
only. The profiles are shown a t  times 1 unit (----) and 5 units (-). 

times of 1 unit and 5 units. As can be seen, a strong shock followed by a rarefaction 
propagates along the cylinder. The compression ratio z 3.8 across the shock may be 
compared with the exact value for a planar strong shock of 4.0. The subsequent 
expansion of shock-heated gas rapidly leads to the large density decrease behind the 
shock. In  the later stages of expansion some backstreaming occurs along the axis 
near the centre to fill the void left by the more rapid expansion of hotter gas in this 
region. 

The smooth profile of the shock in figure 11 should be noted, indicating the 
satisfactory nature of the artificial viscosity term used. The shock front thickness of 
about 3 cells is compatible with the value of u2 used in this test (Richtmyer & Morton 
1967, p. 317). 

12. Conclusion 
A model for examining the expansion of non-uniformly heated thin gas cylinders 

has been examined. It is based on an exact solution of the equations of hydrodynamics 
involving the separation of variables into a two-dimensional similarity system and 
a one-dimensional flow. The method can be considerably extended in its applicability 
by the introduction of a local approximation which is valid for a wide range of 
cylindrical flows, typically aspect ratios greater than 2. A simple test allows the 
validity of the local approximation to  be routinely assessed. The numerical integration 
of the model has been described, and its accuracy assessed by comparison with 
solutions independently obtained. 
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The application of the hybrid model to real flows is accomplished by means of the 
matching parameters r, which express the ratio of the initial dimension of the real 
flow to the equivalent scale length ( l /e  width) of the similarity expansion. I n  purely 
symmetric systems the error introduced by a poor value of the matching parameter 
is relatively small. In  contrast we have shown that, in a hybrid flow, this parameter 
determines the motion of the rarefaction head, and therefore must be reasonably 
accurately known. It is found by several numerical tests that  a good match is 
obtained if the value used is the bulk parameter F, of Pert (1980). 

The hybrid model used in this work has involved an isothermal linear self-similar 
flow, for which an exact solution exists. The application of the model is considerably 
extended by the use of the local approximation, which is remarkably accurate. This 
hybrid model also allows shock propagation along the axis. Other hybrid models no 
doubt exist ; for example, a one-dimensional isothermal linear similarity flow and 
cylindrically symmetric motion describes the expansion of thin circular disks of very 
small aspect ratio. The use of alternative similarity forms is probably somewhat 
limited, for most do not yield an exact solution. Only the local approximation exists, 
and is markedly less accurate, not being based on an exact form. I n  addition other 
forms do not contain a shock solution. The linear isothermal form thus appears in 
many respects unique. Nonetheless it does provide a simple, inexpensive approach 
for those problems to which it can be applied, and which can otherwise only be tackled 
by large and complex computer codes. I n  view of the latter problems, less accurate 
alternative hybrid models may find application using local approximations with a 
check on the accumulated error. 

It is difficult to assess the overall accuracy of the representation of a specific 
problem by the hybrid model in the absence of detailed exact or experimental results. 
The comparison with the essentially two-dimensional modelling described here shows 
that i t  is capable of reasonable accuracy for large-aspect-ratio expansions. As can be 
seen from the data presented the accuracy decreases markedly as the aspect ratio 
approaches unity. Although the tolerable error obviously varies from problem to 
problem, further numerical tests show that a reasonable degree of accuracy can be 
expected for aspect ratios greater than about 3 (for which the local approximation 
is well upheld). At smaller values the results should be interpreted with some degree 
of caution. 

The hybrid model has been used to investigate the expansion of thin carbon fibres 
following irradiation by non-uniform laser beams, where the power deposited varies 
relatively slowly over distances of the order of the fibre diameter. I n  these calculations 
it is assumed that the radial isothermal condition is upheld by thermal conduction, 
but axial temperature variations are allowed. I n  this connection we may remark that, 
since the heat is deposited relatively slowly, Nemchinov's hypothesis (Pert 1980) 
ensures that the transverse density will closely approximate to a Gaussian over most 
of the fibre. 

This work was performed as part of the XUV laser programme and is supported 
by SERC. 

Appendix A. Energy conservation on the mesh 
We consider the total energy at half-integer timesteps defined by 
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with boundary values defined appropriately. We wish to obtain the difference in the 
total mesh energy over one timestep: 

€n+t - p-; = x - fMi+i[(P?*+P?+i) (7?~-7?+i)+(P?+i+P?~') (7?+"+a-&')I 
i 

+ fMi+i[ U?# + U&i) ( U?&' - U&$) + ( V?# + V?$) ( V?+f - V$)l 

+ f(Mt-t + Mi+j) ( W?+i + W?+) (W,.+i - WF-4). 

Making use of the finite-difference relations we obtain, after some algebra, 

en+' - en-t = I: - fM,+i[@?#-P?+i) (7?~-7?+i)-(P?+n+f-P?!') (7?+n+l-7?G1)I 
t 

n+i yn+lA n+1- -i~?+i[{xi+i a+$ Z i i i  (It+& YP+~Az?+~ + XF+~ y?+i( WFA' - wt+') At 

- {X?!' Y?G' AZ??' - (X?+i Y?q AZ?+i 

+ X?+i V?# At AZ?+~ + U?&i At Y?+iAz?+i)} 

- X?+j Y?+i( W?<i - wr-4) At - X?+, Vr!i  At Az?+~ - U?$At Y?+t Az?+~)}], 

neglecting contributions from the boundary. Comparing terms it can be seen that the 
residual terms are of order At3, and that the scheme is therefore weakly conservative 
(see Pert 1981, $111). In this case i t  can be shown that subject to a timestep constraint 
limiting the fractional conservation error increase per timestep, the total error over 
the complete integration is bounded by a term of order At. Since the kinetic energy 
is necessarily non-negative, and the internal energy positive if (33) is satisfied, both 
terms must themselves be bounded. Hence the system is formally stable (Richmyer 
& Morton 1967, pp. 45 and 132). 

This condition is, however, not entirely satisfactory for the value of the fractional 
conservation error remains arbitrary. The problem may be identified by requiring 
that no growth of an error in the solution occurs. This can only be analysed in terms 
of test solutions (cf. Gear 1971, p. 9). Such a solution is that of an initially uniform 
state with a sinusoidal error, i.e. the normal-mode analysisgiven in appendix B, whose 
results are complementary to those of the energy analysis (cf. Richtmyer & Morton 
1967, p. 133). The condition that the fractional error term be not greater than the 
original perturbation leads to a condition essentially the same as (B 15). 

Appendix B. Linear stability of the finite-difference scheme 

component of the error in the representative form 
We consider the response of the finite-difference equations to a single Fourier 

tip = ji exp{itij} (B 1) 
for a term p with Lagrangian index j. Linearizing the finite-difference equations with 
respect to this perturbation we obtain the amplification matrix G for the error in 
the terms (9, gi, 2, Gi, vb, 654) in the forms 

(21, g', i?,Gi, d, 65') = G(P,i jo ,  F, G-4, C-4, G+), (B 2) 

where G is given in table 1 in terms of the sound speed c = (ypo//po)&. As is well known, 
the equations (B 2 )  are linearly stable if the eigenvalues h of G have magnitude less 
than unity (Richtmyer & Morton 1967, p. 68), i.e. 

Ihl < 1 .  (B 3) 
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0 0 1 

We may directly evaluate the determinant for the eigenvalues of G to  obtain 

(1  -A)'-  PA(1 - A ) 4 +  QA2(1 -A) ' -  RA3 = 0, (B 4) 

2 2 sinaa}, P = - ( c A ~ ) ~  {m+-+- 
(YO))" (Azo)2 

where 

Q = 8 ( ~ A t ) ~  {--- 12y-1 1 
2 y2 (x"2 

We may factorize equation (B 4) to 

[( 1 - A), + a, A] [( 1 - A), + a2A]  [( 1 - A), + a, A] = 0, (B 6) 

a3+Pa2+Qa+R = 0. (B 7)  

(B 8) 

AlA2 = 1 ,  A,+& = 2-a .  (B 9) 

where the values al,  a, and a, are roots of the equation 

The eigenvalue A is thus a solution of the quadratic equation 

(1 -A) ) "+aA = 0, 
whose roots A, and A, must satisfy 

Hence, since A, = A,*/lA,1)", i t  is clear that [A1 < 1 if a is real and 0 < a < 4. 

+- 2y-1 X y ,  R = - - X y z  

Equation (B 7) with 
1 

P = -(X+ Y + Z ) ,  Q = (x+ (B 10) Y Y 2  Y2 
may be reduced to the form 

( a - X )  (a- Y )  ( a - Z ) - f 2 ( a - X ) - g g 2 ( a -  Y ) - h 2 ( a - Z ) + 2 f g h  = 0, (B 11)  
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whose roots are all real (Hall & Knight 1948, p. 487). Comparing (B 10) with (€3 5 ) ,  
we see that X, Y ,  2 are all positive and therefore thatf, g and h are real if y 2 1 .  The 
roots of (B 7) are therefore real if y 2 1, and, furthermore, applying Descartes' rule 
of signs it follows that they are all non-negative. 

The cubic (B 7) can only be solved in a simple algebraic form for special cases, for 

2 2 4 sin2 6 example if y = 1 
a1 = __ (cA~))", U, = ~ (cA~))" ,  a3 = ~ (cAt)z. (x")" (YO))" (AZO)~ 

Nonetheless we may derive a simple sufficient condition for stability, for, since 

P=--(a,+cr,+cr,), 

the stability condition on the roots, namely 0 Q a Q 4, is obeyed if 

which is an obvious generalization of the usual Courant-Friedrichs-Lewy condition 
for one-dimensional Lagrangian schemes (Richtmyer & Morton 1967, p. 297). 
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